RECITATION 8
 RELATED RATES, AND LINEAR APPROXIMATIONS

James Holland

2019-10-22

Section 1. Exercises

Exercise 1

Suppose a writer is writing a book, and has a level of enjoyment given by $E(p)=5 p^{2}-e^{p}$ for p pages written. Suppose the writer always writes 5 pages per day, but has thus far written 0 pages. Calculate the rate of change in the writer's level of enjoyment.

Solution .:

Using the chain rule or implicit differentiation, $\frac{\mathrm{d} E}{\mathrm{~d} t}=\frac{\mathrm{d} E}{\mathrm{~d} p} \frac{\mathrm{~d} p}{\mathrm{~d} t}=\left(10 p-e^{p}\right) \cdot 5$. For $p=0$, we get $\frac{\mathrm{d} E}{\mathrm{~d} t}=$ $(0-1) \cdot 5=-5$.

- Exercise 2

Suppose $y^{3}+2 x y^{2}=8$. Suppose $x=0$ and $\frac{\mathrm{d} x}{\mathrm{~d} t}=2$. Calculate $\frac{\mathrm{d} y}{\mathrm{~d} t}$.

Solution .:

Using implicit differentiation, $3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} t}+2 \frac{\mathrm{~d} x}{\mathrm{~d} t} y^{2}+4 y \frac{\mathrm{~d} y}{\mathrm{~d} t} x=0$. Since $\frac{\mathrm{d} x}{\mathrm{~d} t}=2$ and $x=0$, this tells us $3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} t}+4 y^{2}=$ 0 , or that $\frac{\mathrm{d} y}{\mathrm{~d} t}=-4 / 3$ assuming $y \neq 0$. But $y \neq 0$ since $x=0: y^{3}+0=8$ implies $y=2 \neq 0$.

Exercise 3

The cost of making something is given by $C(t)=4 t^{2}-10 t+80$ for t measured in years. Estimate the cost six months after $t=0$.

Solution :

We are estimating $C(.5)$. Using a linear approximation, $C(.5) \approx C(0)+C^{\prime}(0) \cdot .5$ so that the new cost is approximately $80+(8 \cdot 0-10) \cdot(.5)=75$.

Exercise 4

Suppose $x^{2}+y^{2}=13^{2}$ with $y=12$. Suppose $\frac{\mathrm{d} y}{\mathrm{~d} t}=-5$ and $x>0$. Calculate $\frac{\mathrm{d} x}{\mathrm{~d} t}$.

Solution :

Implicit differentiation yields that $2 x \frac{\mathrm{~d} x}{\mathrm{~d} t}+2 y \frac{\mathrm{~d} y}{\mathrm{~d} t}=0$, i.e. that $\frac{\mathrm{d} x}{\mathrm{~d} t}=-\frac{y}{x} \frac{\mathrm{~d} y}{\mathrm{~d} t}$. Since $\frac{\mathrm{d} y}{\mathrm{~d} t}=-5$ and $y=12$, $\frac{\mathrm{d} x}{\mathrm{~d} t}=60 / x$ where $x^{2}+12^{2}=13^{2}$. We can calculate that then $x=\sqrt{13^{2}-12^{2}}=\sqrt{169-144}=\sqrt{25}=5$. Therefore $\frac{\mathrm{d} x}{\mathrm{~d} t}=60 / 5=12$.

- Exercise 5

For $f(x)=x^{3}+x$, approximate $f(.9)$.

Solution \therefore.
$f(.9) \approx f(1)+f^{\prime}(1)(.9-1)=f(1)+f^{\prime}(1) \cdot(-.1)$. We have that $f^{\prime}(x)=3 x^{2}+1$ so that $f^{\prime}(1)=4$.
Moreover, $f(1)=2$ so that $f(.9) \approx 2+4(-.1)=2-.4=1.6$.

Exercise 6

The cost of making x things is $C(x)=2 x^{2}+e^{x-9}$.

1. Using marginal analysis, estimate the cost of making the 10th thing.
2. Suppose each thing sells for $S(x)=3 x-1$ dollars when there are x made. Estimate the revenue from the 10th thing.

Solution . $:$

The marginal cost of making 10 things is given by $C^{\prime}(9)$ since $C(x) \approx C(9)+C^{\prime}(9) \cdot(x-9)$ has $C(10) \approx$ $C(9)+C^{\prime}(9)$. In particular, the cost of the 10th item is $C(10)-C(9) \approx C^{\prime}(9)$. We have that $C^{\prime}(x)=4 x+e^{x-9}$ so that $C^{\prime}(9)=4 \cdot 9+e^{0}=36+1=37$.

The revenue is given by $R(x)=x \cdot S(x)=3 x^{2}-x$. Thus $R^{\prime}(x)=6 x-1$. Therefore $R(10) \approx R(9)+$ $R^{\prime}(9)(10-9)=R(9)+R^{\prime}(9)$ yields $R(10)-R(9) \approx R^{\prime}(9)$. Therefore the revenue from the 10 th thing is given by $R^{\prime}(9)=54-1=53$.

